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Abstract. Urban Heat Islands (UHIs) are a significant consequence of rapid urbanization, 

contributing to environmental and health-related challenges in metropolitan regions. With 

advances in remote sensing and artificial intelligence (AI), satellite-based thermal imagery has 

become a vital tool for detecting, monitoring, and analyzing UHIs. This review presents an in-

depth synthesis of the methodologies, satellite platforms, thermal indices, AI-based modeling 

techniques, and current trends used in UHI mapping. It explores the potential of multitemporal 

thermal datasets, discusses the limitations of traditional methods, and highlights the emerging role 

of machine learning (ML) and deep learning (DL) models in improving UHI analysis accuracy and 

resolution. Furthermore, the review examines the integration of AI with big data platforms for 

large-scale urban monitoring and the importance of high-resolution spatiotemporal datasets for 

climate-responsive urban planning. The findings underscore the growing importance of data-

driven approaches in understanding urban thermal dynamics and offer future directions for real-

time UHI assessment, policy development, and sustainable urban design. 
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1. Introduction 

Urban Heat Islands (UHIs) refer to the 

phenomenon wherein urban areas experience 

significantly higher temperatures than their rural 

counterparts due to the replacement of natural 

land cover with impervious surfaces like concrete 

and asphalt. The consequences include increased 

energy consumption, air pollution, and public 

health risks. Mapping UHIs is vital for climate 

resilience and urban sustainability planning. 

Remote sensing has proven to be an efficient 

means to observe surface temperatures at large 

spatial and temporal scales. In recent years, the 

integration of multitemporal thermal satellite 

imagery and AI techniques has led to significant 

advancements in UHI studies. This review 

outlines key developments and challenges in this 

domain, with a focus on AI-enhanced analysis. 

The UHI effect has been widely observed in 

cities across the globe, with increasing intensity 

over the past few decades due to population 

growth, industrialization, and declining vegetation 

cover [1]. These urban thermal anomalies 

exacerbate heat-related illnesses and mortality 

rates, particularly during summer heatwaves. 

Accurate and timely mapping of UHIs is therefore 

essential for policymakers, urban planners, and 

public health officials to develop heat mitigation 

strategies such as green roofing, reflective 

pavements, and urban greening programs [2]. 

Traditional field-based temperature 

measurements, although precise at local scales, are 

limited in spatial coverage and frequency. In 

contrast, satellite-based thermal remote sensing 

provides synoptic and repeatable observations 

that are essential for capturing the spatial 

heterogeneity of UHIs across urban landscapes. 

The advent of machine learning (ML) and deep 

learning (DL) has further enhanced UHI analysis 

by enabling predictive modeling and pattern 

recognition in large and complex geospatial 

datasets [3]. These advancements are 

revolutionizing how cities monitor and adapt to 

heat-related stressors under ongoing climate 

change. 

2. Urban Heat Island concept and 
importance 

2.1. Definition and causes 

Urban Heat Islands (UHIs) are localized 

zones within urban environments that exhibit 

significantly higher temperatures than 

surrounding rural areas. This phenomenon arises 

primarily due to anthropogenic modifications, 

particularly the transformation of natural land 

surfaces into urban infrastructures such as 

concrete, asphalt, and buildings. These surfaces 

have lower albedo, meaning they absorb more 

solar radiation and retain heat for longer periods 

[4].  

Additionally, urban areas are characterized by 

reduced vegetation cover, which diminishes 

natural cooling through evapotranspiration. Other 

major contributors include heat emissions from 

vehicles, industrial activities, and densely packed 

buildings that trap heat and reduce airflow [5]. The 

cumulative effect of these changes intensifies 

surface and atmospheric temperatures in urban 

zones, thereby creating distinct thermal contrasts 

between urban and peri-urban areas [6]. 

2.2. Implications 

The presence of UHIs has several critical 

implications for both environmental sustainability 

and public health. First, the elevated urban 

temperatures lead to increased energy demand for 

air conditioning and refrigeration, placing pressure 

on local power grids and contributing to 

greenhouse gas emissions [7]. Second, UHIs are 

associated with a deterioration in air quality, as 

higher temperatures accelerate the formation of 

ground-level ozone and prolong the persistence of 

airborne pollutants [8]. From a health perspective, 

vulnerable populations such as the elderly, 

children, and individuals with pre-existing 

conditions face elevated risks of heat exhaustion, 

heat strokes, and even mortality during extreme 

heat events [9]. Finally, UHIs pose significant 

challenges for urban planning, requiring adaptive 

strategies such as increased vegetation, use of 

reflective building materials, and promotion of 
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sustainable land-use practices to mitigate their 

adverse effects [10]. 

3. Satellite-based thermal remote sensing for 
UHI mapping 

3.1. Key satellite sensors used 

Thermal remote sensing has become a 

cornerstone in the monitoring and analysis of 

Urban Heat Islands, offering wide-scale, 

repeatable, and cost-effective observations of land 

surface temperature (LST). Among the most 

widely used satellite platforms is the Landsat 

series—specifically Landsat 5 (TM), Landsat 7 

(ETM+), and Landsat 8/9 (OLI-TIRS). These 

satellites provide moderate spatial resolution 

(approximately 30 meters for optical bands and 

60–100 meters for thermal bands) and a revisit 

interval of 16 days, making them suitable for 

detailed urban-scale studies [11]. 

The MODIS (Moderate Resolution Imaging 

Spectroradiometer) sensors aboard NASA’s Aqua 

and Terra satellites are also extensively utilized due 

to their high temporal resolution. MODIS offers 

daily LST products with a spatial resolution of 

approximately 1 km, which is particularly 

beneficial for regional or global UHI studies 

requiring frequent observations [12]. Sentinel-3, 

operated by the European Space Agency, is 

another valuable platform equipped with the Sea 

and Land Surface Temperature Radiometer 

(SLSTR). It provides higher radiometric sensitivity 

and more accurate LST products with moderate 

spatial resolution, making it suitable for 

continental-scale thermal monitoring [13]. 

In addition, the Advanced Spaceborne 

Thermal Emission and Reflection Radiometer 

(ASTER) onboard NASA’s Terra satellite delivers 

high-resolution (about 90 m in the thermal 

infrared spectrum) thermal imagery, which is 

advantageous for mapping UHIs within dense 

urban landscapes [14]. Each of these satellite 

systems has specific trade-offs between spatial, 

temporal, and spectral resolution, and researchers 

often select or combine sensors based on study 

objectives and geographic scale. 

3.2.  Multitemporal Imagery 

Multitemporal thermal remote sensing 

involves the analysis of LST data across multiple 

timeframes to capture the dynamic nature of 

UHIs. This includes monitoring diurnal variations, 

such as differences in temperature between 

daytime and nighttime, which help identify 

persistent heat retention zones [15]. For instance, 

impervious urban surfaces typically cool more 

slowly than vegetated or water-covered areas, 

leading to nighttime UHIs. 

Seasonal comparisons, such as summer 

versus winter datasets, provide insights into how 

land cover and atmospheric conditions affect UHI 

formation and intensity throughout the year. 

Moreover, long-term or decadal analyses are used 

to assess trends associated with urban expansion, 

land-use change, and the effectiveness of 

mitigation measures like urban greening [16]. 

By examining thermal data across these 

temporal scales, researchers can build a more 

comprehensive understanding of UHI dynamics, 

detect hotspots, evaluate vulnerability, and inform 

climate-adaptive urban planning strategies. The 

availability of consistent, long-term satellite 

archives like those from Landsat and MODIS has 

been instrumental in enabling these multitemporal 

assessments [17]. 

4. Thermal Indices and Surface 
Temperature Derivation 

4.1. Land Surface Temperature (LST) 

Land Surface Temperature (LST) is the key 

parameter used in Urban Heat Island (UHI) 

analysis, as it directly reflects the thermal 

properties of land surfaces as observed by satellite 

sensors. LST is typically derived from thermal 

infrared (TIR) bands of satellite imagery using 

techniques such as the radiative transfer equation, 

split-window algorithms, or mono-window 

algorithms, depending on the sensor 

characteristics and atmospheric conditions [18]. 

Accurate LST estimation requires several 

preprocessing steps, including atmospheric 

correction, surface emissivity estimation, and 
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radiometric calibration [19]. Emissivity, which 

depends on land cover type, plays a crucial role in 

determining the thermal radiation emitted by 

surfaces. Typically, vegetation, soil, water bodies, 

and urban materials exhibit different emissivity 

values, and these variations must be accounted for 

in LST retrieval models. 

LST is often used in combination with 

auxiliary spatial data, such as land use/land cover 

(LULC) maps or vegetation indices, to analyze the 

spatial variability and intensity of UHIs. By 

comparing LST values across urban, peri-urban, 

and rural zones, researchers can quantify UHI 

intensity and detect hotspots. Additionally, 

temporal LST profiles provide insight into the 

seasonal or annual progression of heat stress 

zones in response to climatic or anthropogenic 

changes [20]. Thus, LST serves as a foundational 

variable for identifying thermally vulnerable areas 

and guiding mitigation strategies in urban 

planning. 

4.2. Related Indices 

Several remote sensing-derived indices are 

used alongside LST to better interpret the spatial 

structure and drivers of UHIs. One of the most 

widely used is the Normalized Difference 

Vegetation Index (NDVI), which provides a 

measure of vegetation density and health. NDVI 

is negatively correlated with LST in most urban 

areas—higher NDVI values typically correspond 

to lower surface temperatures due to the cooling 

effect of vegetation through evapotranspiration 

[21]. 

Another key metric is the Normalized 

Difference Built-up Index (NDBI), which 

highlights impervious surfaces such as buildings 

and roads. NDBI is often positively correlated 

with LST, as built-up areas retain heat more 

effectively than vegetated or bare soils [22]. The 

Normalized Difference Water Index (NDWI) is 

also relevant, particularly in urban regions with 

water bodies, which tend to have a cooling 

influence on nearby land surfaces. 

In addition to these, the Urban Thermal Field 

Variance Index (UTFVI) is a specialized metric 

used to classify urban areas based on heat stress 

levels. UTFVI integrates LST with ecological 

thresholds and is useful for zoning cities into 

levels of thermal risk or comfort [23]. These 

indices, when combined with LST data, provide a 

multi-dimensional view of urban thermal behavior 

and help identify the landscape features most 

responsible for UHI formation. 

5. AI Models in UHI Mapping 

5.1. Machine Learning approaches 

Machine Learning (ML) has become a 

valuable tool in Urban Heat Island (UHI) research 

due to its capacity to process vast geospatial 

datasets and uncover complex, non-linear 

relationships between thermal metrics and urban 

environmental variables. Popular ML algorithms 

such as Random Forest (RF), Support Vector 

Machine (SVM), and Gradient Boosting Machines 

(GBM) have been employed to model Land 

Surface Temperature (LST) based on inputs like 

NDVI, NDBI, land use/land cover, and elevation 

[24]. 

Random Forest is particularly known for its 

robustness, minimal need for parameter tuning, 

and high predictive accuracy even in 

heterogeneous urban landscapes [25]. It has been 

widely used to classify UHI intensities, detect 

thermal hotspots, and evaluate the influence of 

various land surface characteristics on urban 

heating. SVM is especially effective in classifying 

complex thermal zones due to its ability to work 

with high-dimensional feature spaces [26]. These 

models are typically supervised, requiring well-

labeled training data but offering strong 

performance for predictive UHI modeling. 

5.2. Deep Learning approaches 

Deep Learning (DL), a subset of AI, brings 

substantial improvements in feature extraction 

and pattern recognition, especially from high-

dimensional and unstructured data like satellite 

images. Among DL methods, Convolutional 

https://odaswa.com/
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Neural Networks (CNNs) are the most prominent 

in geospatial UHI applications. CNNs can 

automatically learn spatial features from thermal 

and multispectral imagery, eliminating the need 

for manual feature engineering [27]. They are used 

for tasks such as UHI intensity classification, heat 

vulnerability mapping, and land cover 

segmentation. 

Moreover, Recurrent Neural Networks 

(RNNs) and their improved versions like Long 

Short-Term Memory (LSTM) networks are 

increasingly applied to model temporal dynamics 

of LST and heat patterns across seasons or years. 

These networks are capable of capturing 

sequential dependencies in time-series satellite 

data, enabling more accurate forecasting of UHI 

behavior under changing climatic or urban 

conditions [28]. 

Despite their capabilities, DL models often 

require large datasets and significant 

computational resources for training. 

Additionally, their "black box" nature makes them 

less interpretable than traditional models, which is 

a challenge when communicating results to urban 

planners and policymakers. 

5.3. Hybrid AI models 

To overcome the limitations of individual ML 

or DL models, researchers are increasingly 

developing hybrid approaches that combine the 

strengths of both. For example, CNNs may be 

used for automated feature extraction from 

imagery, followed by Random Forest or GBM for 

classification or regression tasks [29]. Similarly, 

LSTM networks may be integrated with ensemble 

learning models to predict future temperature 

trends based on historical thermal and climatic 

data. 

Hybrid AI models offer several advantages, 

including enhanced accuracy, better 

generalizability, and the ability to handle both 

spatial and temporal dimensions of UHI 

phenomena. These models also support multi-

source data fusion, enabling the integration of 

optical, thermal, LiDAR, and socio-economic data 

into a unified analytical framework [30]. 

However, hybrid models require careful 

tuning and validation to avoid overfitting and to 

ensure interpretability. As computational power 

becomes more accessible and datasets grow in 

volume and diversity, hybrid AI approaches are 

expected to dominate future UHI research, 

offering real-time, city-scale insights for climate-

resilient urban development. 

6. Applications of AI-enhanced UHI 
mapping 

Artificial intelligence-enhanced Urban Heat Island 

(UHI) mapping has opened new pathways for 

practical applications in urban climate research, 

environmental monitoring, and smart city 

planning. The integration of AI with satellite-

based thermal remote sensing facilitates fine-scale, 

data-driven decision-making for urban resilience 

and public health. 

6.1. Urban planning and sustainable 

development 

AI-driven UHI models help planners identify 

urban hotspots and design mitigation strategies 

such as increasing green cover, implementing 

reflective roofing, and optimizing building 

orientation [31]. Data from multitemporal thermal 

imagery, when processed using machine learning, 

provides valuable insight into how different land-

use categories contribute to UHI intensities. 

Planners use these insights to guide zoning laws, 

green infrastructure development, and building 

regulations that improve thermal comfort and 

reduce energy consumption. 

6.2. Public health and heat risk management 

The identification of high-temperature zones with 

dense population through AI-supported thermal 

mapping enables health authorities to implement 

targeted interventions during heatwaves [32]. 

Vulnerable populations—such as the elderly, 

children, and low-income communities—can be 

prioritized for cooling centers, early warning 

systems, and medical assistance. Moreover, AI 
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models can integrate socio-demographic and 

environmental variables to develop heat 

vulnerability indices for urban health planning. 

6.3. Climate change monitoring and 

adaptation 

Urban areas are central to climate change 

dynamics. AI models applied to multitemporal 

satellite data allow for long-term trend analysis of 

surface temperatures and urban thermal anomalies 

[33]. This supports policymakers in evaluating the 

impact of climate mitigation efforts over time and 

making evidence-based decisions on urban 

adaptation strategies. Coupled with downscaled 

climate projections, these models also help 

forecast future UHI patterns under different 

emission scenarios. 

6.4. Smart City and Real-Time applications 

With increasing access to real-time satellite 

data and IoT-based temperature sensors, AI 

algorithms are now being employed for real-time 

UHI monitoring in smart city frameworks [34]. 

These systems can automatically detect abnormal 

temperature rises, triggering automated responses 

such as activating cooling systems or alerting 

emergency services. AI can also support mobile 

apps and public dashboards that deliver heat alerts 

and safety information to citizens. 

6.5. Environmental justice and policy design 

Disparities in heat exposure due to unequal 

distribution of green spaces, income, and 

infrastructure are being highlighted by AI-based 

UHI mapping. These tools empower advocacy 

groups and urban stakeholders to push for 

equitable environmental policies [35]. By 

visualizing thermal inequalities, governments can 

allocate resources more fairly and develop 

inclusive urban resilience policies that serve all 

socio-economic groups. 

7. Challenges and future directions 

Despite significant advances in satellite-based 

UHI mapping using multitemporal thermal 

imagery and AI models, several challenges persist 

that limit the full potential of this approach. 

Addressing these challenges is essential to 

improve model accuracy, scalability, and practical 

applicability in diverse urban contexts. 

7.1. Limitations in data availability and 

resolution 

One of the primary challenges in UHI 

mapping is the spatial and temporal resolution of 

thermal remote sensing data. While sensors like 

MODIS provide frequent observations, their 

coarse resolution (~1 km) is often insufficient for 

detailed urban analysis. In contrast, high-

resolution sensors such as Landsat and ASTER 

offer better spatial detail but suffer from longer 

revisit periods and limited temporal coverage due 

to cloud cover or data gaps [36]. Moreover, 

nighttime thermal data, which is critical for 

understanding diurnal UHI variation, is less 

frequently available across satellite platforms. 

7.2. Data fusion and integration complexities 

Integrating multitemporal data from different 

sensors (e.g., Landsat, MODIS, Sentinel-3) poses 

significant challenges due to differences in spatial, 

spectral, and radiometric properties. Data 

harmonization techniques—such as statistical 

downscaling or image fusion—require careful 

calibration and validation to ensure consistency 

[37]. Additionally, combining thermal datasets 

with ancillary data like land use, population 

density, and socio-economic indicators adds 

further complexity to preprocessing pipelines. 

7.3.  AI model generalization and 

interpretability 

While AI models, especially deep learning 

algorithms, exhibit strong performance in UHI 

prediction, they often function as "black boxes" 

with limited interpretability [38]. This lack of 

transparency can hinder their adoption in policy-

making and urban planning. Furthermore, many 

models trained on data from a specific city or 

region may not generalize well to different climatic 

or urban settings without retraining, limiting their 

scalability. 
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7.4. Limited ground truth data for validation 

High-quality ground-based observations of 

land surface temperature (LST) are essential for 

validating satellite-derived UHI models. However, 

such datasets are often sparse or unavailable, 

particularly in developing countries [39]. The lack 

of in-situ measurements reduces confidence in AI 

model predictions and restricts the development 

of hybrid models combining satellite and ground 

data. 

7.5. Ethical and equity considerations 

AI-driven UHI mapping may inadvertently 

reinforce existing biases if models are trained on 

incomplete or unrepresentative datasets. 

Moreover, unequal access to data and computing 

resources can create disparities in who benefits 

from these technologies [40]. Future research 

must prioritize inclusive data governance and 

participatory modeling to ensure that UHI 

mitigation strategies serve all communities 

equitably. 

7.6. Future research directions 

To overcome these challenges, future efforts 

should focus on: 

• Developing interpretable AI models: 

Integrating explainable AI (XAI) 

techniques can enhance model 

transparency and trust. 

• Enhancing transferability: Designing 

models that adapt across regions using 

transfer learning can improve 

generalizability. 

• Integrating real-time IoT data: Combining 

satellite data with IoT-based temperature 

sensors can enable continuous, localized 

UHI monitoring. 

• Fostering interdisciplinary collaboration: 

Collaboration among urban planners, 

climatologists, data scientists, and 

policymakers is vital for designing 

sustainable and actionable UHI solutions. 

8. Conclusion 

Urban Heat Islands (UHIs) pose a growing 

threat to the livability and sustainability of cities 

worldwide, especially in the context of rapid urban 

expansion and climate change. The integration of 

satellite-based thermal remote sensing with 

multitemporal analysis has significantly advanced 

our understanding of the spatial and temporal 

dynamics of UHIs. Furthermore, the 

incorporation of Artificial Intelligence (AI), 

particularly machine learning and deep learning 

models, has enhanced the precision and efficiency 

of UHI mapping and prediction. 

This review has highlighted the evolution of 

thermal remote sensing technologies, the 

significance of multitemporal datasets, and the 

capabilities of AI models in capturing the complex 

patterns of urban thermal environments. While 

notable progress has been made, challenges such 

as limited high-resolution data availability, model 

generalization, lack of ground validation, and 

ethical concerns still remain. Addressing these 

limitations requires a multidisciplinary approach 

that combines technological innovation with 

inclusive urban planning practices. 

Looking forward, future UHI research 

should prioritize the development of interpretable 

and transferable AI models, greater integration of 

real-time ground-based observations, and the use 

of next-generation satellite platforms. By bridging 

the gap between remote sensing science, AI 

advancements, and urban policy, it is possible to 

design effective, data-driven strategies for 

mitigating UHI effects and promoting resilient 

urban development. 
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