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Abstract. The increasing deployment of Internet of Things (IoT) devices has led to a 

surge in real-time data generation, challenging traditional cloud-centric processing models 

due to latency, bandwidth, and privacy constraints. Edge computing addresses these 

limitations by bringing computation closer to data sources. However, the constrained 

resources at edge nodes demand lightweight and efficient processing frameworks. This 

paper proposes a modular, lightweight edge computing framework optimized for real-

time IoT data processing. The framework comprises data acquisition, an adaptive 

scheduling engine, a real-time processing core, and a communication interface designed 

for minimal resource consumption. Performance evaluations conducted in a simulated 

smart agriculture environment demonstrate significant improvements in latency, 

throughput, and energy efficiency over cloud-only architectures. The results indicate that 

the proposed approach is scalable, adaptable, and suitable for latency-critical IoT 

applications. 
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1. Introduction 

The rapid proliferation of Internet of Things 

(IoT) devices across industries—ranging from 

healthcare and agriculture to manufacturing and 

smart cities—has led to exponential data 

generation at the network's edge. Traditional 

cloud-based models are increasingly inadequate 

for real-time processing needs due to bandwidth 

limitations, high latency, and privacy concerns 

[1][2]. Edge computing emerges as a compelling 

paradigm that brings computation and data 

storage closer to the data source, thereby 

enhancing responsiveness and efficiency [3]. 

However, the limited computational and storage 

capacities of edge nodes pose challenges to 

processing complex data streams efficiently [4]. 

As IoT applications become more latency-

sensitive, such as in autonomous vehicles, remote 

surgery, and industrial control systems, the 

demand for instant analytics has grown. In these 

environments, delays of even a few milliseconds 

can lead to system failures or safety hazards 

[5][6]. Relying solely on cloud infrastructure not 

only introduces unacceptable latency but also 

increases dependence on network availability [7]. 

This necessitates a new computing architecture 

that enables devices to act on data at the point of 

collection, making real-time edge processing not 

just advantageous but critical [8]. 

Moreover, many IoT deployments operate 

in resource-constrained environments with 

intermittent connectivity, such as rural farms or 

remote monitoring stations [9]. For such 

contexts, it is vital to develop lightweight, 

scalable, and energy-efficient frameworks that 

can operate autonomously at the edge with 

minimal cloud dependency [10]. This paper 

addresses this need by presenting a novel edge 

computing framework that combines real-time 

responsiveness with low resource overhead, 

suitable for diverse and demanding IoT 

scenarios. 

The primary contributions of this study 

include the design and implementation of a 

modular lightweight edge framework, empirical 

evaluation in a real-world-inspired setup, and 

comparative analysis against cloud-centric 

architectures. The results highlight how even 

resource-limited edge devices can efficiently 

process streaming data when equipped with 

optimized software modules and scheduling 

intelligence [11][12]. 

2. Related Works 

Edge computing has evolved as a response 

to the limitations of centralized cloud 

architectures in handling IoT data. Several studies 

have explored distributed edge-to-cloud 

architectures that aim to reduce latency and 

increase fault tolerance. Chiang and Zhang [13] 

introduced fog computing as a complementary 

layer between cloud and edge, highlighting 

improvements in network efficiency. In another 

study, Varghese et al. [14] discussed the benefits 

of edge-first strategies in managing real-time data 

flows across smart environments. 

To enable real-time inference on edge 

devices, lightweight frameworks such as 

NanoEdge AI and Edge Impulse have emerged 

[15][16]. These frameworks focus on energy-

efficient deployment of models in constrained 

environments but often trade off between model 

accuracy and inference time. Jeong et al. [17] 

investigated dynamic resource allocation 

techniques that address these trade-offs in edge 

nodes. Meanwhile, Zhou et al. [18] proposed load 

balancing strategies that adjust based on device 

heterogeneity. 

In terms of intelligent scheduling, Alqahtani 

et al. [19] developed context-driven orchestration 

algorithms for edge-assisted IoT, significantly 

reducing packet drop rates. Complementary work 

by Abbas et al. [20] provided a taxonomy of task 

offloading strategies and emphasized the role of 

AI in optimizing resource allocation across edge 

ecosystems. 

Despite these advancements, few studies 

offer a unified framework that integrates real-

time stream analytics, adaptive scheduling, and 

cross-layer communication under low resource 
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budgets. For instance, Zhang et al. [21] focused 

solely on offloading, while Liang et al. [22] 

emphasized federated learning but did not 

address scheduling. This paper aims to bridge 

these gaps by proposing a lightweight yet 

comprehensive architecture tailored for edge-

driven IoT applications. 

3. Methods 

3.1. Framework Architecture 

To address the computational limitations of 

edge devices, we developed LEAF (Lightweight 

Edge Analytics Framework), a modular and 

adaptive edge computing solution. LEAF is 

designed to operate seamlessly on low-power 

edge devices, such as Raspberry Pi 4 Model B 

units, characterizing typical IoT deployment 

environments. The framework is comprised of 

four core functional modules deployed on edge 

nodes to handle the sensing, processing, 

scheduling, and communication of data. 

3.2. Data Preprocessing and Analytics 

LEAF begins with a Stream Preprocessing 

Module, tasked with filtering and cleaning raw 

sensor data, mitigating sensor noise, and 

performing lightweight feature extraction. By 

reducing data volume at this stage, subsequent 

processing becomes more efficient. The filtered 

data is then passed to the Analytics Engine, 

which is optimized for running lightweight 

machine learning models, primarily built using 

TensorFlow Lite. These models focus on real-

time anomaly detection, event prediction, and 

localized decision-making. 

3.3.  Adaptive Scheduling and Offloading 

Given the limited computational and energy 

resources at the edge, LEAF employs a Scheduler 

and Offloader module that operates based on 

real-time system metrics (e.g., CPU load, battery 

level, and network latency). This module employs 

dynamic rule-based algorithms to selectively 

process tasks locally or offload them to the fog 

or cloud, thus balancing latency and energy 

efficiency. Critical real-time tasks are always 

prioritized for local execution to minimize delay. 

3.4. Communication Protocols 

The Data Communication Layer ensures 

lightweight and reliable data exchange between 

edge, fog, and cloud platforms. LEAF leverages 

the MQTT protocol for secure, low-bandwidth 

communication; its lightweight nature suits IoT's 

resource-constrained environment and provides 

better reliability under intermittent network 

conditions. 

3.5. Experimental Setup 

To validate LEAF's performance, a testbed 

comprising three Raspberry Pi 4 edge devices 

was set up. Data streams emulating real-world 

environmental conditions (temperature, 

humidity, and motion) were generated. The 

performance of LEAF was compared across 

three architectures: a traditional cloud-centric 

approach, a hybrid edge-fog-cloud approach, and 

the proposed edge-centric LEAF system. Each 

architecture was evaluated based on latency, 

energy consumption, throughput, CPU 

utilization, and scalability under varying 

workloads. 

4. Results and Discussion 

4.1. Performance Metrics 

The lightweight framework achieved a 58% 

reduction in average latency, improving response 

time from 1.2 seconds (cloud-only) to 0.5 

seconds. Throughput increased by 35%, from 80 

messages/second to 108, validating the efficiency 

of the edge processing engine. 

4.2. System Utilization 

Average CPU usage remained below 70%, 

and RAM usage did not exceed 60%, confirming 

the framework's suitability for resource-

constrained edge devices. Energy usage per 

transaction was reduced by 24%, as fewer 

packets were transmitted to the cloud. 
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4.3. Scalability and Fault Tolerance 

The Adaptive Task Scheduler dynamically 

balanced load across edge and fog layers as the 

number of devices increased. Even at 25 

concurrent sensor inputs, latency remained under 

1 second, indicating excellent scalability. The 

framework gracefully handled network 

interruptions by buffering data locally and 

syncing once connectivity was restored. 

4.4. Comparative Evaluation 

Metric 
Cloud-

Only 

Edge 

Framework 

Latency (s) 1.2 0.5 

Throughput 

(msg/s) 
80 108 

CPU Usage (%) 90 68 

Energy Use 

(mWh) 
40 30.4 

 

These results support the conclusion that 

decentralized, lightweight edge solutions are 

viable for latency-critical and bandwidth-limited 

environments. The modularity of the system also 

allows for customization per application domain. 

5. Conclusion  

This paper presented a lightweight, modular 

edge computing framework optimized for real-

time data processing in IoT ecosystems. By 

integrating efficient data acquisition, adaptive 

scheduling, and lightweight analytics modules, 

the framework significantly reduces latency and 

resource consumption, even in resource-

constrained environments. Its performance was 

validated in a smart agriculture scenario, where it 

outperformed traditional cloud-based models 

across key metrics. 

The proposed framework demonstrates that 

real-time intelligence can be effectively delivered 

at the edge without relying on high-end hardware 

or constant cloud access. Future work will 

explore integrating federated learning for 

collaborative model training across multiple edge 

nodes and expanding the system's application to 

urban mobility, smart homes, and disaster 

monitoring. Additionally, automated 

optimization of scheduling policies using 

reinforcement learning may further enhance the 

adaptability of the system. 
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